Bottom-up Views of Distributed Learning: The Role of Distributed Cognition

Garett Howardson, Ph.D.
U.S. Army Research Institute
U.S. Army Research Institute for the Behavioral and Social Sciences

Bottom-Up Views of Distributed Learning: The Role of Distributed Cognition

Briefing for:

iFEST 2019 Conference

The views expressed in this presentation are those of the author and do not reflect the official policy or position of the Department of the Army, DOD, or the U.S. Government.

27/08/2019

Garett Howardson, Ph.D.
U.S. Army Research Institute for the Behavioral and Social Sciences (ARI)
Modern operating environment is **dynamic** and **nonlinear**

- Classic *Instructional Systems Design* (ISD) model is **linear** and relatively* **static**

Future success depends on individual-Soldier-driven and on-the-job learning

- Within broader context of U.S. Army / Military needs

Enter the role of distributed learning

- Eases ISD constraints on creation → delivery
• First distributed learning paradigm:
 – Centralized Information → Learners
 – Origins: “First Generation” learning

• Second distributed learning paradigm:
 – Learners → Centralized Information
 – Origins: “Second Generation” learning

• Third distributed learning paradigm:
 – Learners → Decentralized Information
 – Origins: “Third Generation” learning
• Socially de-centralized information not always desirable
 – Examples: lockout / tagout, trash compactor, M249

• What is needed is a distributed learning paradigm incorporating 1st, 2nd, & 3rd features

• Modern operating environment is \textit{dynamic} and \textit{nonlinear}
Current Research Aims

• Integrate multidisciplinary research into dynamic, nonlinear distributed learning paradigm

• Emphasize theoretical concept of information gradient

• Span diverse spatial, social, and temporal scales

<table>
<thead>
<tr>
<th>Machine Learning</th>
<th>Human Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multilayer perceptron</td>
<td>Self-regulated learning</td>
</tr>
<tr>
<td>Hopfield nonlinear attractor network</td>
<td>Near and far transfer</td>
</tr>
<tr>
<td>Stochastic gradient descent</td>
<td>Part-task training</td>
</tr>
</tbody>
</table>
• Systems-based
 – Bottom-up emergent phenomena (e.g., learning)
 – Top-down system constraints (e.g., training)

• Skill-centric
 – Open and closed skills

• Grounded in *cognitive extension* (Clark, 2010)
 – Coupled internal-external functions no different than qualitatively different internal functions
Information Gradient Distributed Learning

Open Skills

Open Skill Information
- Originates from **learner**
- Flows from **bottom-up**
- Exists **within** the learner
- Is learner- or self-regulated

Learn

Organization

Closed Skill Information
- Originates from **organization**
- Flows from the **top-down**
- Exists **beyond** the learner
- Is organization-regulated

Information Gradient

Learner

Train

Closed Skills
Upcoming Steps

• Now:
 – Multi-disciplinary narrative review integrating diverse learning science literatures via *information gradient* concept

• Near Future:
 – Collect critical incidents to derive prototypical bottom-up (i.e., learning) and top-down (i.e., training) experiences

• Far Future:
 – Develop open-source set of modeling tools spanning micro, meso, and macro distributed learning dynamics across diverse time (e.g., seconds, minutes, career) *and social* (e.g., individual, team) scales
Potential Implications

• Offer a common distributed learning language integrating micro, individual-level behavioral processes with macro, organizational-level processes

• Improve automatic and objective learner assessment in distributed high dimensional behavioral settings
 – Aggregate micro-level information to more meaningful level for learner feedback / training designers

• Improve communication between wide range of DoD stakeholders and policymakers interested in distributed learning
Thank you!

garett.n.howardson.civ@mail.mil